Open Banking Innovation Model by Digital Transformations, Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)

Mohammadali Mirfallah Lialestani 1 Abbas khamseh 2

Abstract
Given the emergence of digital transformation from Industry 4 and the rapid dissemination of technological innovations as well as their impact as a strong driving force in new banking businesses, efforts should be made to identify the dimensions of this core factor as rapidly as possible. Providing a comprehensive overview of all aspects of the model. The purpose of this article is to provide insights into the state of the art of digital transformation in the banking industry and suggest ways for future research. Existing literature, especially research for 2019 and 2020, has enhanced our understanding of the specific aspects of digital transformation in future banking, and we are now grasping a clearer picture of nature, how, and the consequences of these in the years ahead. However, all its dimensions are not yet clear. In this article, by review of 218 articles in the WOS database, and the analysis has utilized the data-driven tools, 165 questionnaire and 90 specialized interviews with experts, extracted factors of the research, and using SMART PLS statistical software, ANFIS and MATLAB software for analysis. The paper, therefore, tends to understand Open Banking Innovation based on the digital transformation area and its dimensions in its previously known domains.

Received: 10/12/2020 Accepted: 19/04/2021

1 Department of Technology Management, Roodehen Branch, Islamic Azad University, Roodehen, Iran
2 Department of Industrial Management, Karaj Branch, Islamic Azad University, Karaj, Iran

Correspond Author: abbas.khamseh@kiau.ac.ir
Keywords Digital Transformation, Open Banking, Banking Innovation, Business Strategy, Business Model

Introduction

Today, the world is realizing a big change, a change centered on evolving innovations and technologies that will have a profound impact on people's lives, the structure and thinking of organizations, and even the interactions of countries. Understanding this change and timely accompanying this change seems to be essential for all organizations of all sizes. The advent of new and powerful digital technologies, digital platforms and digital infrastructure has transformed innovation and entrepreneurship in significant ways. Beyond opening up new opportunities for innovators and entrepreneurs, digital technologies have wider implications for value creation and development (Nambisan, et al., 2019 OCT). But digital transformation (DT) is a process by which people can adapt themselves to modern technology. As digital technology becomes more prevalent (automation, cameras, sensors, touch screens, artificial intelligence, etc.), there will be more pressure on companies to make more profit (Young & Rogers, 2019). Digital transformation in the field of industry (also known as industry 4.0 or smart manufacturing) at both the professional and academic levels has increased interest in and interest in production, but is still in its infancy and in-depth research Needs more and more. Even with the current and potential benefits of digital production that are very significant, in terms of improved productivity, sustainability, customization and flexibility, only a limited number of companies have been able to adopt interim strategies to achieve superior performance and utilize this and formulate their position (Savastano, et al., 9 February 2019). We know that research to understand digital transformation requires combining
multiple themes and cross-level analysis, embracing ideas and concepts from multiple contexts and disciplines (Nambisan, et al., 2019 OCT). The main purpose of this study is to identify the dimensions of digital transformation and to examine the different domains of its impact and ultimately to prepare a Grounded theory model to provide an appropriate analysis of the digital transformation process for future studies. Innovation in this paper has been the combined use of library research including the volume of previous research and the use of Grounded theory method in their content analysis, as well as the complementation of experts' views in developing a model for digital transformation.

Literature Review

We know that the disruption caused by digital conditions is transforming all industries, leading to new business models based on new technologies. Industry 4.0 is therefore a model for understanding and using digital disruption and interference. Industry 4.0 offers include vertical and horizontal integration of value chain, digital services, digital transformation of products, digital transformation of production equipment, digital transformation of factories, and digital transformation of supply chains (Cozmiuc & Petrisor, 2018 APR-JUN). Also, special attention to the relative advantages of the economy is the best way toward economic development. In the absence of a systematic perspective, all the planning and costs in this field will fail. (Doulabi, khamseh, & Torabi, 2020). The "Industry 4.0" factories have machines that are powered by wireless connectivity and sensors, connected to a smart system that can visualize and decide on the entire production line. In essence, industry 4.0 is a trend towards automation and data exchange in technologies and production processes that include physical and cyber systems, IoT, IIoT, cloud computing, cognitive
computing and artificial intelligence (Wikipedia, 2016). Systematic risks are also essential to be able to execute Industry 4.0 comprehensively. The economic, environmental and social risks posed by the implementation of Industry 4.0 in the field of SMEs need to be addressed. In addition, the technical, IT and political or legal risks arising from the concept are very important (Birkel, et al., 2019). Digital transformation includes new elements that deserve sufficient attention and interesting challenges for future research. Specifically, when managers need to adapt their business strategy to digital realities by integrating new technologies into their business models (Reis, et al., 2018). The understanding of digital transformation can be distinguished by focusing on the following: technology first, strategy second, technology and strategy third. Organizations in the third group will understand the importance of integrating the different aspects of digital transformation, so that new technology is implemented and associated organizational change is complemented by a separate digital strategy through transformation strategy (Bosilj Vuksic, et al., 2018). On the other hand, the digital transformation and innovation of the resulting business model fundamentally alters consumer expectations and behaviors and disrupts the performance of many small markets (Verhoef, Broekhuizen, & Bartb, 2019). In addition, the intellectual property system, along with the immense potentials available as digital tools, includes data and knowledge on complementary capital, labor, natural resources and other processes that are constantly changing, leading to restructuring of supply chains (Scholz, et al., 2018). In the business models sector, digital transformation is an ongoing process of applying new digital technologies to the everyday life of an organization that is agile as a key mechanism for strategic reshaping of business models in parts of (1) the organization, (2) a collaborative approach, and finally (3) will bring culture
(Warner & Waeger, 2019 JUN). In recent years, companies in almost all industries have undertaken a number of initiatives to discover the benefits of digital and to use technologies and exploit their benefits. These changes have often affected the evolution of key business functions, products, processes, and organizational changes. Corporate governance structures and concepts need new management approaches to manage these collections. Transformations are an important approach to formulating digital transformation strategies. The potential benefits of digitization are enormous and include increased sales or productivity, innovation in value creation and other forms of customer interaction. As a result of this change, entire business models can be transformed or replaced (Downes & Nunes, 2013). Digital transformation is described as a new business model or as a transformation. A digital transformation project involves implementing digital capabilities to support the business model. The changes resulting from this change affect the entire organization, especially the operational processes, resources, and internal operations, which are in fact coordinated and based on the intensive cooperation and interaction of external users in optimizing work habits and methods (Henriette, et al., 2015). And in order to digitize the product, you need to analyze the size of the company or its core size. Similarly, it is interesting that the patterns of B2C companies are quite different from those of B2B models for success (Matt, et al., 2015). The four main tasks that the industry faces are: enhancing customer experience, improving business processes, delivering new products, and preparing to compete with other industries (Eling & Lehmann, 2017). Digital transmission is accelerating by two key drivers in the industry: cloud services and resource virtualization, as key building blocks in cyber systems that integrate IT-OT principles, models, platforms and integration requirements Digitally produced, they focus on the concept of Industry 4.0,
OPEN BANKING INNOVATION MODEL BY DIGITAL TRANSFORMATIONS

with a focus on the "future industry" (Borangiu, et al., 2019 JUN). One of the important factors in the failure of the technology application to gain a competitive advantage in firms is the lack of awareness and knowledge of the level of technological capabilities of the firm and their use for comparative advantages. The high importance of technology development has led the company's senior managers to identify and evaluate the technological capabilities of their firm and in parallel to identify technological developments in the world and monitor the efforts of competitors to achieve new technologies and to improve the technology capability of the firm. On the other hand, evaluating technological capability is one of the key tools in the field of technology management that uses this tool to identify strengths and improvements to measure the technological gap. (khamseh & Marei, 2020). The institutional perspective is also a very applicable lens for the study of digital innovation and transformation. In digital transformation, we mean the effects of a combination of several digital innovations that make new actors, structures, practices, values and beliefs that change, replace or complement the existing rules of play in organizations and contexts. From this perspective, three types of new formalities for digital transformation have been identified that include: digital organizational forms, digital institutional infrastructures, and digital building blocks (Hinings, et al., 2018 MAR). Despite the increasing importance of digital transformation and the concept of malicious innovation, strategy literature still lacks a more complete picture of how organizations committed to their business models after this disruption (Cozzolino, et al., November 2018). However, scientific research and innovation management practices have emphasized the important role of individual competencies in addressing the challenges of digital transformation. However, this sector still lacks sufficient empirical studies,
and preliminary results show that individuals' high growth in cognitive and metacognitive skills enhances a company's digital transformation processes. But surprisingly, social competences have only a small effect (Butschan, et al., 2019 MAY). Organizations are using digital technologies to change the paths of value creation and change the conditions of competition. To this end, they must implement structural change and overcome the obstacles that hinder their efforts to evolve. Because they have more information with digital technologies, their computing, communication and connectivity creates new forms of collaboration between actors and distributed networks. In doing so, they also create dependencies among actors whose interests may not be fully aligned. Digital technologies influence the strategic implications of digital transformation and the dynamic interaction that occurs between companies and their environments (Vial, 2019). Digital transformation can also come from the integration of end-to-end systems that are separate from one another in the traditional value chain or in the digital ecosystem of the larger IT industry and through IoT. Digital transformation will potentially affect the workforce. It is challenging to build the skill and pay gap between skilled digital workers and workers in their more traditional role in industry, especially in emerging economies (Accenture, January 2017). Changing the industrial production paradigm, digitizing business processes, reconfigures every aspect of the organizational and operational activities throughout the value chain, and manufacturing companies need to take a systematic approach by mapping digital roadmaps to address job opportunities throughout the value chain (Savastano, et al., 9 February 2019). However, the application of technology alone is not enough, but to gain the benefits of digitalization, it requires business model innovation such as making changes to advanced jobs and service models. Specifically, the challenges of creating value, delivering value and the components of a business innovation value
capture model need to be understood more fully as well as how to align these components in creating a sustainable industry (Parida, et al., 2019). Successful implementation of innovation practices that ensure effective value creation throughout the supply chain includes: (1) changing the mind and developing an innovation strategy and communicating it to all members of the supply chain; (2) seeing evolution as a long-term process and evolutionary innovation as a cycle, which will be implemented after several tests (3). Functional and inter-organizational (Sabria, et al., 2018). Process improvement is the most added value in the Business Process Management (BPM) cycle. With the mature knowledge, many approaches have failed due to lack of guidance on how to make the process better. Given the diversity of emerging digital technologies, organizations are not only facing the black box of process improvement, but there is also uncertainty about digital technologies (Denner, et al., 2017). Many customers are also facing a digital transformation process that will lead to partial or fully virtual processes, compliant enterprise structures and digital business models. Virtualization promises innovative opportunities for optimum performance and service delivery, thereby strengthening the competitive position (Nissen, 2018). Digital transformation calls for a redefinition of economics, labor, and democracy for humanity. AI-based devices may take over key areas of human work, reorganize supply chains, induce platform economics, and alter the participation of economic actors in the value chain. Digital transformation defines knowledge and data as the main variables of economic, capital, labor and natural resources. Digital data and technologies will produce a major capital and fuel in the subsequent profitability process, and traditional democratic processes can be (intentionally or unintentionally) replaced by digital technologies (Scholz, et al., 2018). Also, business Intelligence (BI) covers the tasks of collecting, processing, and analyzing
large volumes of data. The main purpose of BI is to help companies improve their performance in the turbulent environment of business and enhance their competitive advantage in this immense data age. (Ahmadi & Zare, 2021). Digitalization promises to change tax management faster than the tax law itself will change. These changes include systems analysis, big data, and ongoing process automation. Although digital transformation will be challenging for taxpayers, the benefits are also significant. In this way, examining legal, ethical issues is important together. With the development of big data technology, automation, artificial intelligence, security and blockchain, all of these changes will affect tax management (Bentley, Duncan, 2019). In reporting from traditional business to government (B2G), can use the conceptual lens of the institutional function of examining how traditional business reporting to government and how digital reporting is to replace it and try to reduce it (Troshania, et al., 2018). The very dynamic success of the global expansion of digital multinationals is largely due to the widespread use of platform-based business models. Customer behavior patterns and expectations have become more sophisticated as the boundary between traditional industries fades in favor of digital leaders and consumers. In this environment, dynamic multinational activities are currently on the path to digital transformation (Alexey V, 2018 SEP). In the economic field, banks are still distant from digital banking because they still lack the key jobs and technical bases to implement digital banking. Likewise, digital culture is a lost asset in banking (Pourbrahimi, et al., 2018). We know that fintechs are a new segment of the financial market that is made up of a combination of technology and financial services. This section focuses on financial services and innovation. Innovations come under the heading of research, blockchain and security with a strong emphasis on this area, and represent the most sensitive aspects of the current
global issue of digital transformation (Milian, et al., 2019 MAR-APR). The
digitalization of banking services based on new technology empowers banks
to respond to new customer demands, and the banking sector has undergone
major changes (Drasch, et al., 2018 NOV-DEC). With the growth of
technology, organizations are also experiencing massive changes in the
design and leadership of their work. Change in life - work and health, use of
information and communication technology, performance and management
of talent and organizational hierarchy. In addition, two dimensions of macro-
level change have evolved with a focus on work structure and leadership (Schwarzmüller, et al., 2017). In the area of senior management, despite the
importance of healthy partnerships between CEOs and CIOs in organizations
for effective business and information technology alignment, we still have
little information on how to compare aspects of mutual understanding
between them and how they can collaborate and build a unique perspective (Benlian & Haffke, 2017). In the field of health in the healthcare ecosystem,
the digital transformation of health services requires more advanced
information technology competence that integrates directly with service
users, residents, patients and their relatives in providing care services and
creating value (Dugstad, et al., 2019). Collection, analysis and management
of clinical data with electronic applications has already been widely used.
But digitizing medical records along with the principles of electronic
medical data management, in addition to enhancing efficiency and reducing
treatment costs, ensures clinical effectiveness across all medical institutions
and provides a good opportunity for structural transformation efforts in the
field of health with digital transformation (Schoenermark, 2019 MAR).
With the exchange of information, humans and intelligent objects are able to
make common decisions on a broader, higher quality field (Zimmermann, et
al., 2016). And smart, interconnected products are transforming the industry.
Live smart products must be (1) integrated at different levels of organizational strategy, including policy, intelligence, control, performance and communication channels, (2) modeled (3) integrated at different levels of organizational strategy. And digital transformation should not lead to separate investments in smart technologies (Barata & Rupino da Cunha, 2019). Future human scenarios and subsequent work and robotics life highlights the need for a robotic roadmap that covers key aspects of industrial and service robotics, including three important areas: the future of robotic technology, digitization and technology. Analyzes ICTs in the key economic, social and political challenges of digital transformation (Kaivo-oja, et al., March 2017). In the domain of identity, the virtual identity model is also presented as a multi-dimensional concept involving several levels. Virtual identity building is based on a variety of macro- or community-based factors, including narrative scripts, virtual intimacy, virtual community, and virtual instrument culture (Nagy & Koles, 2014). In the field of security, a growing synergy between IoT and social technologies is helping to advance the physical cyber-social systems. The integration of new technologies faces key challenges related to information security and privacy (Mendhurwar & Mishra, 2019). Most past studies of Open Innovation focus mainly on the firm level of large corporation. But now, the landscape of innovation has changed enormously. Enterprises can no longer afford to innovate on their own, due to the labor mobility, abundant venture capitals and widely dispersed knowledge across multiple public and private organization. (Khamseh, et al., 2012) Knowledge sharing in networks also seems to have not received much attention so far. Therefore, integrating the vision of key areas of knowledge, strategy, and innovation and information security management with the aim of identifying the requirements of knowledge protection in the era of digital transformation has been considered. In this
regard, both (1) the threat of leakage and exploitation by unauthorized persons, and (2) the threat of unavailability and destruction, are significant challenges for internal and external threats. What makes these threats more difficult to address is the digital transformation that constantly changes the operating landscape of organizations and stimulates the development of complex networks in which organizations participate (Ilvone, et al., 2018).

Method

Analysis of data and information in scientific research is one of the most important stages of research and includes classification, summarization, description and analysis of collected information. In the analysis process, first the statistical data are analyzed using descriptive indicators and to answer the research questions, data, statistical methods and appropriate measurement scales are used according to the purpose of the research. Raw data, as a mass of quantitative information, are first summarized and transformed into analyzable evidence, and finally analyzed. In this research, the above methods have been used to analyze the data and answer the research questions. In this way, using descriptive statistics, the collected data are summarized and described. Then, using the analysis of the conceptual model of the research, the statistical population is judged. Describing the research data and examining the required characteristics of the collected information such as the validity and reliability of the questionnaire and also analyzing the extracted factors of the research have been done using SMART PLS statistical software. ANFIS and MATLAB software.

Design of fuzzy inference system with adaptive neural approach and General model information: The main component of the research (final output of the system) Table 1. shows the factors and indicators related
to them (primary and intermediate input of the system). Accordingly, the relevant mathematical model in this study includes a main ANFIS in the field of open banking innovation with digital transformation approach and eight Sub-ANFIS belonging to the aggregation of the effects of each of the indicators on the relevant factors. Also Figure 1. the show conceptual model of research in one view.

Table 1.

Main Component of Research, Factors and Indicators

<table>
<thead>
<tr>
<th>Index</th>
<th>source</th>
<th>indicators</th>
<th>factors</th>
<th>Main component</th>
</tr>
</thead>
<tbody>
<tr>
<td>STR</td>
<td>Experts Nambisan et al, 2019 Ivone, et al, 2018</td>
<td>Organizational strategy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INN</td>
<td>Experts Verhoefa, et al, 2019</td>
<td>Innovation approaches</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OPEN BANKING INNOVATION MODEL BY DIGITAL TRANSFORMATIONS

<table>
<thead>
<tr>
<th>Index</th>
<th>source</th>
<th>indicators</th>
<th>factors</th>
<th>Main component</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBA</td>
<td>Experts</td>
<td>New approaches to banking</td>
<td></td>
<td>Cultural (CUL)</td>
</tr>
<tr>
<td>DTC</td>
<td>Pourebrahimi, et al, 2018 JUN Experts</td>
<td>The pervasiveness of digital culture</td>
<td></td>
<td>Economic (ECO)</td>
</tr>
<tr>
<td>ITA</td>
<td>Schoenermark, 2019 MAR Experts</td>
<td>Approach to innovation and technology in society</td>
<td></td>
<td>Social (SOU)</td>
</tr>
</tbody>
</table>
OPEN BANKING INNOVATION MODEL BY DIGITAL TRANSFORMATIONS

<table>
<thead>
<tr>
<th>Index</th>
<th>source</th>
<th>indicators</th>
<th>factors</th>
<th>Main component</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYP</td>
<td>Experts</td>
<td>Security policies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCH</td>
<td>Experts</td>
<td>The evolution of the financial industry</td>
<td></td>
<td>Financial (FIN)</td>
</tr>
<tr>
<td>FSR</td>
<td>Experts</td>
<td>New approaches to banks’ financial services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCH</td>
<td>Experts Birkel, et al, 2019</td>
<td>Technological developments</td>
<td></td>
<td>Technology (TEC)</td>
</tr>
</tbody>
</table>

Barata et al, 2019

Downes & Nunes, 2013

Birkel et al, 2019

Borangiu et al, 2019

Zimmermann et al, 2016

Cozmiuc et al, 2018 APR-JUN

Accenture, January 2017
Figure 1. The conceptual model

Define the primary membership function for input and output variables: ANFIS systems require the function to be derivative. Due to the application of Gaussian functions (as a membership function in adaptive network-based fuzzy inference systems) in the vast majority of similar studies, the Gaussian function category has been used for this purpose. These functions, with the ability to open and close (due to changes in the parameter σ (standard deviation)), can also cover most values.

$$\text{gussian}(x, \sigma, c) = e^{-\frac{(x - c)^2}{\sigma}}$$

In the above relation, c denotes the center of symmetry and σ denotes the opening of the function. The Gaussian function has a smooth curve and its parameters can be adjusted with linguistic variables. The change range for input and output variables is also defined between 0 and 10. The Figure 2. shows the initial membership function for the input and output language.
variables of the adaptive fuzzy neural inference system of open banking innovation with digital transformation approach and its subsystems.

![Initial membership function to evaluate OBDT](image)

Figure 2. Initial membership function to evaluate OBDT

Structuring inference rules: The most important part of a fuzzy system is its rule base. This set of rules is a set of logical "if-then" rules that lead to the mapping of input variables to output variables, and various methods such as direct use of expert knowledge are used for this purpose. In this research, in order to design inferential rules, the powerful ANFIS tool (in other words, relying on the combination of neural network learning power and logical operation of fuzzy systems) and the knowledge of experts in the field of digital banking and open banking have been used. For this purpose, to extract the knowledge of experts, oral questionnaires (a kind of interview) containing a combination of different values for input variables (randomly) have been prepared and experts have been asked to consider these values for input variables and according to experiences. Judge the output variable by themselves or their scientific knowledge. Fuzzy inference rules actually relate the inputs of a fuzzy inference system to the output. In other words, the inferential laws express the different combinations of input on output. For this purpose, by defining the input and output variables in the range of 0 to 10 and the effect of the results obtained from the ranking of research factors (by FANP method), has led to a more structured way to
extract expert knowledge. The main ANFIS has eight inputs of organizational, cultural, economic, social, political-legal, security, financial and technological factors and its output is open banking innovation with digital transformation approach. Here, experts are asked to consider different values for the eight input components and according to their experimental (or specialized) knowledge, the amount of output variable or in fact the performance of open banking innovation with digital transformation approach. Estimate the effects of these factors. The information extracted from the knowledge of experts and their judgment about the output variable of the designed model (under different values of its inputs), is divided into three categories: training data, test and review. Training data is used in modeling the target system and test and review data is used to validate the model (designed). Table 2 shows how the information and values obtained for designing the aforementioned ANFIS inferential rules are collected (meaning Ei Certified i th).

<table>
<thead>
<tr>
<th>Table 2.</th>
<th>Model Data Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random values generated for expert presentation</td>
</tr>
<tr>
<td>Ei</td>
<td>Organizational</td>
</tr>
<tr>
<td>E1</td>
<td>3</td>
</tr>
<tr>
<td>E2</td>
<td>2</td>
</tr>
<tr>
<td>E3</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

...
After collecting information from experts, we have to categorize the numerical data used to model the inference system. The purpose of categorization is to identify natural data sets from a large set of data to form the overall shape of system behavior. Fuzzy classification models the data behavior best and with the least number of rules, and the C-mean fuzzy classification method is commonly used for classification. But this algorithm is only useful when the centers of the clusters can be defined. Another disadvantage is the determination of parameter C as input, which must be specified by the user first, and there is no specific way for it. Also, this algorithm is not suitable for detecting clusters with complex shapes. Subtractive clustering is an enhanced method of clustering that has overcome the limitations of the previous method, and in the absence of any clear idea that the given set should be multi-part, this clustering method can be used. In this research, to form the structure of inferential rules, this method has been used, which has a fast and one-pass algorithm for estimating the number of categories and data centers in a data set, and in the
clustering process by Subtractive clustering values Impact coefficients, approval ratio and rejection ratio are 1.25, 0.5 and 0.15, respectively.

ANFIS training: To achieve the parameters of the membership function in the training routine, two methods are available: Back Propa and Hybrid. In the Back Propa method, after calculating the error and returning backwards, the error value is spread to the inputs (on the parameters) and finally, using the downward slope algorithm, the value of the parameters is corrected (just like the after-method Propagation of error used in neural networks). Therefore, by combining the two methods, we achieve a hybrid and optimal training method (Hybrid) that has been used in this research.

Error Tolerance is also directly related to the magnitude of the error and is used to determine a criterion for stopping training. Designed ANFIS with 40 training courses (EPOCH) achieved an acceptable error rate and Table 3. shows the amount of this error in the main ANFIS and Sub-ANFIS after 40 training courses.

Table 3.

Error Rate Designed in ANFIS

<table>
<thead>
<tr>
<th>ANFIS</th>
<th>Error</th>
<th>ANFIS</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORG</td>
<td>9.9622 × 10⁻⁸</td>
<td>PIE</td>
<td>4.98914 × 10⁻⁵</td>
</tr>
<tr>
<td>CUL</td>
<td>0.104058</td>
<td>SEC</td>
<td>0.0131556</td>
</tr>
<tr>
<td>ECO</td>
<td>2.86812 × 10⁻⁵</td>
<td>FIN</td>
<td>0.0515827</td>
</tr>
<tr>
<td>SOU</td>
<td>0.129132</td>
<td>TEC</td>
<td>7.35834 × 10⁻⁷</td>
</tr>
<tr>
<td>OBDT</td>
<td>8.17775 × 10⁻⁷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The designed model, which has eight inputs (eight factors) and the output of open banking innovation with a digital transformation approach, has 50 inferential rules. Figure 3.
ANFIS architecture: In order to evaluate the factors affecting open banking innovation with the digital transformation approach, we first design a main ANFIS, which is shown in Figure 4. Its structure consists of 50 rules and has 5 layers and the first layer is dedicated to 8 inputs (Sub-ANFIS) which are the following factors: 1. Organizational (ORG), 2. Cultural (CUL), 3. Economic (ECO), 4. Social (SOU), 5. Political and Legal (PIE), 6. Security (SEC), 7. Financial (FIN), 8. Technology (TEC). And the fifth layer also includes the output of the model.
As can be seen in the Figure 5 the main ANFIS inputs (eight factors) are each a Sub-ANFIS, which in the following figures are adaptive fuzzy neural systems (Sub-ANFIS) designed for each component. The main ANFIS system inputs are shown.

- ANFIS 1- Organizational Factors (ORG) Inputs (components): Organizational Strategy (STR), Business (BIU), Organizational change (CHE), Enterprise Resource Control (RES), Adaptation and adaptation to
environmental changes (COM), Innovation Approaches (INN), New Approaches to Banking (NBA) Figure 6.

- **ANFIS 2-** Cultural factor (CUL) Inputs (components): The prevalence of digital culture (DTC), Approach to Innovation and Technology in Society (ITA)

- **ANFIS 3-** Economic factor (ECO) Inputs (components): Economic requirements from digital (ECR), Economic Dimensions of Digital Development (ESD), Attention to Digital Economy (ECA)

- **ANFIS 4-** Social Factors (SOU) Inputs (components): Social Impacts (EES), Social Requirements (EER)

- **ANFIS 5-** Political and Legal Factor (PIE) Inputs (components): Political factors (POL), Legal Structuring (LES), Dimensions of legal protection (LED)

- **ANFIS 7-** Financial Agent (FIN) Inputs (components): Financial Industry Transformation (FCH), New Approaches to Banking Financial Services (FSR)

- **ANFIS 8-** Technology Agent (TEC) Inputs (components): Transformational Technologies (TET), Technological Developments (TCH), Data field (DAT), Digital Approach (DTA) Figure 7.
Findings

According to the database of rules extracted for this research, the combination of different modes of factors will lead to different outputs of the designed system. Figures 8 to 11 present the curves of the factors affecting the issue of open banking innovation with a digital transformation approach. Each of these factors has been compared with each other either independently or in pairs and their effect on the main component of the research has been shown. In Figures 8 and 9, increasing the amount of organizational, political and legal factors in the range of zero to five, compared to values greater than five, has had a lesser effect on increasing open banking innovation with the digital transformation approach. In other words, for values greater than four, they increase the output variable almost several times (except that the increasing trend of the organizational factor ends with an increasing rate compared to the initial interval and with a decreasing rate for the political and legal factor). That is, the influence of the eight factors makes sense over time. However, they may have less effect on system output at initial values.
Figure 8. Diagram of the Impact of Changes in Organizational Factors on Open Banking Innovation with Digital Delivery Approach

Figure 9. Chart of the Impact of Changes in Political and Legal Factors on Open Banking Innovation with a Digital Delivery Approach

The Figures 10 and 11 are three-dimensional diagrams whose decision level is created by ANFIS (designed). The structure of these curves is such that it shows the effect of binary values of input components on the output variable of the research subject.

Figure 10. Comparison curve of the effect of two organizational (cultural) factors (input) on the output variable

Figure 11. Comparison curve of the effect of two cultural (social) factors (input) on the output variable

Implementation of mathematical model: In order to evaluate the factors affecting the improvement of open banking innovation with a digital transformation approach, a questionnaire was designed and experts in this
field (number of 90 people) were asked to announce their views on the four factors of banks' performance level. The survey was identified by marking the relevant continuum containing values from 0 to 10. Tables 4, A, B, C, D, E, F, G, and H, input and output values under organizational subsystems (ORG), cultural (CUL), economic (ECO), social (SOU), Political and Legal (PIE), Security (SEC), Financial (FIN) and Technology (TEC). Also, the figures below each table represent the rules base of the mentioned subsystems.

Table 4-A.
Organizational Sub-ANFIS Input and Output Values

<table>
<thead>
<tr>
<th>STR</th>
<th>BIU</th>
<th>CHE</th>
<th>RES</th>
<th>COM</th>
<th>INN</th>
<th>NBA</th>
<th>ORG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.65</td>
<td>7.62</td>
<td>7.2</td>
<td>1.65</td>
<td>10</td>
<td>5.47</td>
<td>8.55</td>
<td>6.27</td>
</tr>
</tbody>
</table>

Table 4-B.
Cultural Sub-ANFIS input and output values

<table>
<thead>
<tr>
<th>DTC</th>
<th>ITA</th>
<th>CUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9</td>
<td>4.14</td>
<td>3.84</td>
</tr>
</tbody>
</table>

Table 4-C.
Economic Sub-ANFIS input and output values

<table>
<thead>
<tr>
<th>ECR</th>
<th>ESD</th>
<th>ECA</th>
<th>ECO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.03</td>
<td>8.28</td>
<td>8.85</td>
<td>5.13</td>
</tr>
</tbody>
</table>

Table 4-D.
Social Sub-ANFIS input and output values

<table>
<thead>
<tr>
<th>EES</th>
<th>EER</th>
<th>SOU</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.49</td>
<td>1.85</td>
<td>3.02</td>
</tr>
</tbody>
</table>

Table 4-E.
Political and Legal Sub-ANFIS Input and Output Values

<table>
<thead>
<tr>
<th>POL</th>
<th>LES</th>
<th>LED</th>
<th>PIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16</td>
<td>2.67</td>
<td>5.14</td>
<td>6.89</td>
</tr>
</tbody>
</table>

Table 4-F.
Security Sub-ANFIS input and output values

Table 4-G.
Input and Output Amounts of Financial Sub-ANFIS
After the implementation of Sub-ANFIS, their output is used as the main ANFIS input to evaluate the factors affecting open banking innovation with a digital transformation approach (OBDT). Table 5. shows the values of these inputs and outputs in the main model as well as Figure 12 of the main ANFIS rule database.

Table 5.

ANFIS Input and Output Values of OBDT

<table>
<thead>
<tr>
<th>ORG</th>
<th>CUL</th>
<th>ECO</th>
<th>SOU</th>
<th>PIE</th>
<th>SEC</th>
<th>FIN</th>
<th>TEC</th>
<th>OBDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.27</td>
<td>3.84</td>
<td>5.13</td>
<td>3.02</td>
<td>6.89</td>
<td>4.66</td>
<td>4.86</td>
<td>3.16</td>
<td>4.25</td>
</tr>
</tbody>
</table>
As can be seen, the level of open banking innovation with the digital transformation approach is estimated at 4.25, which is in the average range.

Mathematical model validation: Before implementing and executing the system designed in the case study, the validity of the mathematical model was assessed. Model testing and its validity increase the reliability of the model and its applicability. For this purpose, two methods of "testing and
examining the data set" and "limit condition test" have been used to validate the mathematical model.

Test and review datasets: Validation was performed with the help of test data to test the ability to generalize the obtained fuzzy inference system, and we used the latest data set (review data) to control the problem of overfitting. For this purpose, in the present study, the designed ANFIS error trend was investigated and Figures 13 and 14 clearly show the consistency between the training data and the test and review data.

In the diagram above, the * sign (star) indicates the ANFIS output and the circle symbol indicates the test data with the mean error calculated at 8/17775. In Figure 14, the asterisk indicates the system output and the plus sign indicates the survey data, which is almost identical, indicating a lack of Over Fitting in the designed ANFIS.

Limit condition test: In this test, the value of the main ANFIS input variables is changed in different limit states (very high and very low) and the output of the model against these changes is investigated. In other words, the purpose of this test is to validate the appropriate behavior (reliability) of the
obtained mathematical model with respect to changes in the values of input data.

Table 6.

The Effect of Simultaneous Changes in Inputs on Output

<table>
<thead>
<tr>
<th>ANFIS Outputs</th>
<th>ANFIS Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBDT</td>
<td>TEC</td>
</tr>
<tr>
<td>0/02</td>
<td>0</td>
</tr>
<tr>
<td>4/53</td>
<td>5</td>
</tr>
<tr>
<td>9/36</td>
<td>10</td>
</tr>
</tbody>
</table>

As shown in the Table 6, the model behaves quite logically against changes in input variables from very low (zero) to very high (10). This test was performed for all eight Sub-ANFIS and all of them showed a logical behavior towards the limit values of the inputs, which indicates the validity of the designed model.

Model sensitivity analysis: To investigate the amount of output changes versus input changes, two inputs with maximum effect on output and minimum effect on output can be selected and the effect of their changes on output can be examined. For this purpose, we select the ORG input as the most effective factor on the output and increase its value by one unit. The result of this change is shown in Table 7 and Figure 15.

Table 7.

Output Rate Change in Exchange for ORG Change

<table>
<thead>
<tr>
<th>ORG</th>
<th>CUL</th>
<th>ECO</th>
<th>SOU</th>
<th>PIE</th>
<th>SEC</th>
<th>FIN</th>
<th>TEC</th>
<th>OBDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.27</td>
<td>3.84</td>
<td>5.13</td>
<td>3.02</td>
<td>6.89</td>
<td>4.66</td>
<td>4.86</td>
<td>3.16</td>
<td>4.38</td>
</tr>
</tbody>
</table>
Also, by keeping all the factors constant, we examine the politico-legal input as a unit of reduction and the output changes. The results of this change are shown in Table 8 and Figure 16.

Table 8.

Rate of Output Change in Exchange for PIE Change

<table>
<thead>
<tr>
<th>ORG</th>
<th>CUL</th>
<th>ECO</th>
<th>SOU</th>
<th>PIE</th>
<th>SEC</th>
<th>FIN</th>
<th>TEC</th>
<th>OBDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.27</td>
<td>3.84</td>
<td>5.13</td>
<td>3.02</td>
<td>5.89</td>
<td>4.66</td>
<td>4.86</td>
<td>3.16</td>
<td>4.25</td>
</tr>
</tbody>
</table>
As can be seen, the output changes by 0.06 in response to a change in the PIE component. In contrast, the same amount of change in the ORG component changes only 0.13. That is, the effect of ORG on output is greater than the effect of PIE on output.

Figure 16. Output rate change in exchange for PIE change

Conclusions

As can be seen from the results, the organizational factor with the first rank and weight criterion of 24.24% is the most important variable among the factors affecting open banking innovations with digital transformation approach and can be the main decision criterion in the field under study. Be. And the political-legal factor with a weight criterion of 4.80% is in the last rank and can be expected to have the least influence in the relevant decision.
OPEN BANKING INNOVATION MODEL BY DIGITAL TRANSFORMATIONS

Technology factor with a weight of 18.36% Financial factor with a weight of 14.68% Economic factor with a weight of 11.90% Security factor with a weight of 10.30% Social factor with a weight of 8.88% Cultural factor with a weight of 6.79% In the next categories of factors affecting open banking innovations with The approach to digital transformation in Iran. As a result, Iranian banks in the development of open banking innovation with digital transformation approach, must first create organizational changes such as changing organizational strategy, changing business models and processes, replacing innovation-oriented business model instead of their current business. Organize changes related to digital transformation, align and adapt to environmental change, and develop a business network for their digital ecosystems with an innovative approach. In this direction, important issues such as complexity management, development of knowledge within the organization, decision-making agility and service production, readiness for open innovation along with enterprise resource planning and digital maturity development have an important effect on the development of open banking innovations. With the approach of digital transformation in Iran. On the other hand, attention to technological factors as the basis for new changes in banking, such as transformational technologies, attention to the importance of data and data mining and the use of digital approach in customer service processes in the second place in the development of open banking innovations with the approach to digital transformation.

References
Alexey V, B., 2018 SEP. MULTINATIONAL BUSINESS IN THE ERA OF GLOBAL DIGITAL REVOLUTION. MIROVAYA EKONOMIKA I MEZHDUNARODNYE OTNOSHENIYA 62 (9), pp. 5-17.

implementation of digital monitoring technology in residential care for persons with dementia. BMC Health Services Research.

Milian, E. Z., Spinola, M. d. M. & de Carvalho, M. M., 2019 MAR-APR. Fintechs: A literature review and research agenda. ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS 34: Art. No. 100833, pp. Milian EZ (Milian, Eduardo Z.); Spinola MD (Spinola, Mauro de M.); de Carvalho MM (de Carvalho, Marly M.).

